Wechselrichter - de.LinkFang.org

Wechselrichter




Ein Wechselrichter (auch Inverter oder Drehrichter) ist ein elektrisches Gerät, das Gleichspannung in Wechselspannung umwandelt. Wechselrichter bilden neben Gleichrichtern, Gleichspannungswandlern und Umrichtern eine Untergruppe der Stromrichter.

Inhaltsverzeichnis

Allgemeines


Je nach Anwendung erzeugen Wechselrichter entweder einen ein- oder mehrphasigen Ausgangsstrom bzw. eine ein- oder mehrphasige Ausgangsspannung. Der Wirkungsgrad halbleiterbasierender Geräte kann bis zu 99 Prozent erreichen.[1]

Eingesetzt werden Wechselrichter dort, wo elektrische Verbraucher Wechselspannung bzw. Strom zum Betrieb benötigen, aber nur eine Gleichspannungsquelle zur Verfügung steht. Wichtige Anwendungsgebiete sind unter anderem die Ansteuerung von Wechselstrommotoren oder in der Photovoltaik zur Umwandlung des von Solarmodulen gewonnenen Gleichstroms in einen Wechselstrom, zur Einspeisung in das öffentliche Stromversorgungsnetz oder dem direkten Verbrauch.

Arten


Es gibt elektromechanische Zerhacker, Motorgeneratoren und elektronische Wechselrichter mit Röhren oder Halbleitern (Prinzip von Oszillator oder astabiler Kippstufe/Multivibrator).

Steuerung

Man unterscheidet zwei Steuerungsarten von Wechselrichtern:

Anwendungsbeispiele für selbst geführte Wechselrichter

Anwendungsbeispiele für fremd geführte Wechselrichter

Form der Ausgangsspannung selbst geführter Wechselrichter

Heutzutage sind drei Ausgangsspannungsformen von selbst geführten Wechselrichtern üblich:

Rechteck- und Trapezwechselrichter werden oft zur Erzeugung von Wechselspannung mit der Netzspannung gleichendem Effektivwert aus Gleichspannungsquellen (z. B. 12-Volt-Akkumulatoren) verwendet.
Rechteckwechselrichter erzeugen eine Rechteckspannung.
Trapezwechselrichter (im Handel werden sie auch als modifizierter Sinus-, oder Quasi-Sinuswechselrichter bezeichnet) erzeugen ebenfalls eine Rechteckspannung, wobei jedoch zwischen positivem und negativem Rechteck eine Pause liegt (siehe nebenstehendes Bild).
Rechteck- und Trapezwechselrichter lassen sich kostengünstiger herstellen als Sinuswechselrichter, da hier auf die aufwändige Pulsweitenmodulation, die im Sinuswechselrichter vorhanden ist, verzichtet wird. Die rechteckige Ausgangsspannung ist für manche Geräte, die damit betrieben werden, problematisch, da sie stark von der Sinusspannung abweicht. Transformatoren, Motoren und Heizgeräte können zwar mit rechteckförmiger Spannung betrieben werden, die steilen Spannungsanstiege verursachen jedoch Störemissionen. Solche Wechselrichter sind unproblematisch für Geräte, die sich ohmsch verhalten (z. B. Glühlampen, Heizgeräte). Problematisch an Trapezwechselrichtern sind Geräte, die ihre Leistung durch Triacs steuern (Staubsauger, manche modernen Kaffeemaschinen) – sie funktionieren eingeschränkt oder gar nicht. Einige Spezialmonitore oder auch Kühlschränke mit Elektrothermostat erkennen manchmal einen Unterschied und zeigen eine Störung an, wenn keine Sinuswechselspannung anliegt.
Sinuswechselrichter erzeugen aus einer Gleichspannung eine Sinuswechselspannung. Sie eignen sich für alle Geräte, auch solche mit kapazitivem Verhalten (LED-Lampen, Kompaktleuchtstofflampen, Schaltnetzteile). Auch Sinuswechselrichter erzeugen Störungen, diese sind jedoch gering. Die Störungen rühren daher, dass die Sinusform mittels einer pulsweitenmodulierten Rechteckspannung, meist im zweistelligen kHz-Bereich, synthetisiert wird.

Bei induktiven Lasten (Motoren, Kühlschränke, Werkzeuge) muss aufgrund des Anlaufstromes die Spitzenleistung des Wechselrichters ausreichend hoch sein. Der Notwendigkeit, für Millisekunden einen ca. zehnmal so hohen Anlaufstrom zu benötigen, tragen höherwertige Modelle Rechnung. Sie vertragen kurzzeitig eine dreimal so hohe Last wie ihre angegebene Dauer-Nennleistung.

Anwendungen


Photovoltaik

Ein Solarwechselrichter ist Teil einer Solaranlage. Auf der Eingangsseite befindet sich üblicherweise ein oder mehrere Gleichstromsteller mit Maximum-Power-Point-Tracker, den ein Mikroprozessor steuert und den Zwischenkreis speist. Auf der Ausgangsseite befindet sich ein ein- bis dreiphasiger Wechselrichter und synchronisiert sich automatisch mit dem Stromnetz.

Unterbrechungsfreie Stromversorgungen (USV)

Eine USV enthält einen Wechselrichter, der bei Stromausfall im einfachsten Fall mit einem Relais statt des Netzes an die Verbraucher geschaltet wird. Die kurze Umschaltpause von einigen Millisekunden wird von den meisten Verbrauchern toleriert. Der Wechselrichter besteht aus einem Akkumulator, der bei vorhandenem Netz mit einer Ladeschaltung geladen und auf der Ladeschlussspannung gehalten wird. Ältere USV arbeiteten mit einem netzfrequenten Transistor-Zerhacker und einem nachfolgenden netzfrequenten Transformator, heutige Geräte benutzen höherfrequente PWM-Wechselrichter und sind daher leichter.

Frequenzumrichter und Netzrückspeisung

Eine weitere Anwendung findet der Wechselrichter als Komponente eines Frequenzumrichters. Hier wird aus einer Wechselspannung nach Gleichrichtung (Zwischenkreis) eine Wechselspannung anderer Frequenz erzeugt. Damit kann beispielsweise ein Asynchronmotor in der Drehzahl geregelt werden. Die Energie beim Abbremsen des Motors, er arbeitet dann als Generator, wird bei einfachen Frequenzumrichtern in einem Bremswiderstand in Wärme umgewandelt. Um diese Energie stattdessen ins Netz rückspeisen zu können, kann am Zwischenkreis ein netzgeführter Wechselrichter angeschlossen werden. Es entsteht ein 4-Quadranten-Umrichter. Solche Umrichter können auch ohne Gleichrichter und Zwischenkreis realisiert werden (Matrix-Umrichter).

An drehzahlveränderlichen Wasser- oder Windkraftanlagen ist ebenfalls ein 4-Quadranten-Umrichter erforderlich.

Wechselrichter in Kraftfahrzeugen

Wechselrichter für den Einsatz in Kraftfahrzeugen sind meist für den Anschluss an den Zigarettenanzünder oder für Festanschluss (Wohnmobile, Busse, LKW) ausgelegt. Es gibt sie für 12 Volt (PKW) und 24 Volt (LKW, Busse).

Der erste Fahrzeughersteller, der in einem Serien-PKW einen Wechselrichter mit der Netzspannung 230 V anbot, war die Volkswagen AG. Mittlerweile sind für verschiedene PKW-Modelle Wechselrichter mit einer Steckdose für Eurostecker als Sonderausstattung zu haben, Wechselrichter mit Haushaltssteckdosen sind auch erhältlich.

Beim Betrieb von Wechselrichtern höherer Leistung über den Zigarettenanzünder an einem 12-Volt-Bordnetz ist zu beachten, dass bei der niedrigen Spannung von 12 V ein sehr hoher Strom geführt werden muss (Wärmeentwicklung, Kontaktbelastung). Der Zigarettenanzünder ist in der Regel mit 15 A abgesichert und sollte dauerhaft nicht mit mehr als 10 A belastet werden, um die Kontakterwärmung in Grenzen zu halten. Es können also nur Verbraucher mit bis etwa 100 bis 150 Watt Dauer-Leistungsaufnahme am Zigarettenanzünder betrieben werden. Zudem sind die starke Belastung der Bordbatterie und deren geringe Zyklenlebensdauer zu beachten. Eine Entladetiefe von unter 30 % sollte vermieden werden; somit lassen sich aus einer üblichen 50-Ah-Batterie sinnvoll max. 35 Ah entnehmen.

Bei laufendem Motor muss beachtet werden, dass die Lichtmaschine zwar einen Ladestrom im Bereich von 50 A liefern kann, ein beträchtlicher Teil aber durch die Beleuchtung und andere Verbraucher aufgenommen wird, wodurch bereits bei einem Laststrom von 20 A zusätzlich eine Entladung der Batterie stattfinden kann.

Wechselrichter, die für den Einsatz in Kraftfahrzeugen vorgesehen sind, müssen eine E-Kennzeichnung enthalten. Dieses Zeichen weist darauf hin, dass das Bauteil die erforderlichen Prüfungen und Genehmigungen bestanden hat und somit in Kraftfahrzeugen eingebaut werden darf.

Beleuchtung

Anwendung findet der Inverter, hier in Form eines Resonanzwandlers, bei Leistungen im Bereich von einigen 10 W als elektronisches Vorschaltgerät in Leuchtstofflampen.

Ein weiteres großes Anwendungsgebiet dieser Inverter ist die Stromversorgung von Leuchtröhren (CCFL), die häufig als Hintergrundbeleuchtung für TFT-Flachbildschirme verwendet werden.

Aufbau früher und heute


Mechanisch

Wechselrichter können elektromechanisch als Zerhacker oder Motorgenerator oder elektronisch mit Röhren oder Halbleiter realisiert werden. Bei den früher üblichen Zerhackern (Kontaktwechselrichter) polt ein mechanischer Kontakt periodisch die zugeführte Gleichspannung mit einem Wagnerschen Hammer um. Den dabei auftretenden Kontaktverschleiß verringerte der Turbowechselrichter. Bei ihm sind die periodisch schaltenden Kontakte durch einen Quecksilberstrahl ersetzt, der sich in einer geschlossenen Kammer von einem Motor betrieben im Kreis dreht.

Mit Elektronenröhren

Mit Vakuumröhren realisierte Wechselrichter sind nur für kleinere Leistungen geeignet, sind mechanisch empfindlich und wurden kaum gebaut. Wechselrichter größerer Leistung wurden mit steuerbaren Quecksilberventilen (Thyratrons) realisiert. Später verwendete man für diesen Zweck Thyristoren (mit Löschthyristor oder GTO).

Mit Halbleitern

Alle diese Frequenzumrichter arbeiteten im Takt der Frequenz der zu erzeugenden Wechselspannung und konnten keine Sinus-Ausgangsspannung erzeugen. Diese Wechselrichter sind in der Schaltfrequenz daher auf wenige hundert Hertz begrenzt, meist arbeiteten sie mit 50 Hz. Leistungstransistoren (Bipolartransistoren, MOSFET, IGBT) können das Zerhacken der Gleichspannung mit hoher Effizienz und ohne Verschleiß bewerkstelligen, sie arbeiteten u. a. in USV im Rechteckbetrieb mit 50 Hz und speisten wie auch früher die Zerhacker einen 50-Hz-Transformator. Eine solche Schaltung wäre z. B. ein Vierquadrantensteller.

Transistoren ermöglichen jedoch auch Schaltfrequenzen von bis zu einigen 10 kHz und arbeiten dann im Chopperbetrieb. Dies wird auch als Unterschwingungsverfahren bezeichnet: Mit den als Schaltelemente verwendeten Transistoren (meist IGBT) wird durch Pulsweitenmodulation (PWM) im Chopperbetrieb eine Sinus-Wechselspannung aus kurzen Pulsen hoher Frequenz (einige bis über 20 kHz) nachgebildet (Sinus-Wechselrichter). Die Transistoren polen, wie auch früher die Zerhacker, die Gleichspannung periodisch um, jedoch mit höherer Frequenz. Der Mittelwert der hochfrequenten, pulsweitenmodulierten Schaltfrequenz ist die Ausgangs-Wechselspannung. Man setzt also die Ausgangswechselspannung aus kleinen, unterschiedlich breiten Impulsen zusammen und nähert so den netzüblichen sinusförmigen Spannungsverlauf an. Zur Glättung der PWM dienen Drosseln, die jedoch viel kleiner sind als solche, die für die Glättung der Ausgangswechselspannung früherer Wechselrichter erforderlich waren. Bei Motoren kann auf eine Drossel ganz verzichtet werden. Die Grundschaltungen sind in Schaltnetzteilen zu finden. Der Unterschied besteht in der modulierten Referenzspannung zur Steuerung der Ausgangsspannung.

Siehe auch


Literatur


Weblinks


Commons: DC/AC Inverters (power)  – Sammlung von Bildern, Videos und Audiodateien
Wiktionary: Wechselrichter – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen

Einzelnachweise


  1. Fraunhofer ISE (Hrsg.): Fraunhofer ISE verbessert eigenen Weltrekord - Über 99 Prozent Wirkungsgrad bei Photovoltaik-Wechselrichtern . 2009, 29. Juli 2009 (Presseinformation).



Kategorien: Leistungselektronik | Spannungswandler



Quelle: Wikipedia - https://de.wikipedia.org/wiki/Wechselrichter (Autoren [Versionsgeschichte])    Lizenz: CC-by-sa-3.0


Veränderungen: Alle Bilder und die meisten Designelemente, die mit ihnen in Verbindung stehen, wurden entfernt. Icons wurden teilweise durch FontAwesome-Icons ersetzt. Einige Vorlagen wurden entfernt (wie „Lesenswerter Artikel“, „Exzellenter Artikel“) oder umgeschrieben. CSS-Klassen wurden zum Großteil entfernt oder vereinheitlicht.
Wikipedia spezifische Links, die nicht zu Artikeln oder Kategorien führen (wie „Redlink“, „Bearbeiten-Links“, „Portal-Links“) wurden entfernt. Alle externen Links haben ein zusätzliches FontAwesome Icon erhalten. Neben weiteren kleinen Designanpassungen wurden Media-Container, Karten, Navigationsboxen, gesprochene Versionen & Geo-Mikroformate entfernt.


Stand der Informationen: 02.07.2020 10:31:50 CEST - Wichtiger Hinweis Da die gegebenen Inhalte zum angegebenen Zeitpunkt maschinell von Wikipedia übernommen wurden, war und ist eine manuelle Überprüfung nicht möglich. Somit garantiert LinkFang.org nicht die Richtigkeit und Aktualität der übernommenen Inhalte. Sollten die Informationen mittlerweile fehlerhaft sein oder Fehler in der Darstellung vorliegen, bitten wir Sie darum uns per zu kontaktieren: E-Mail.
Beachten Sie auch : Impressum & Datenschutzerklärung.