Tesserakt - de.LinkFang.org

Tesserakt

Tesserakt
(8-Zeller)
4-Kubus
Hypercube.svg
Schlegeldiagramm
Gruppe Reguläre Polytope
Familie Hyperkubus
Zellen 8 (4.4.4) Hexahedron.png
Flächen 24 {4}
Kanten 32
Ecken 16
Schläfli-Symbole {4,3,3}
{4,3}x{}
{4}x{4}
{4}x{}x{}
{}x{}x{}x{}
Coxeter-Dynkin-Diagramme CDW ring.pngCDW 4.pngCDW dot.pngCDW 3.pngCDW dot.pngCDW 3.pngCDW dot.png
CDW ring.pngCDW 4.pngCDW dot.pngCDW 3.pngCDW dot.pngCDW 2.pngCDW ring.png
CDW ring.pngCDW 4.pngCDW dot.pngCDW 2.pngCDW ring.pngCDW 4.pngCDW dot.png
CDW ring.pngCDW 4.pngCDW dot.pngCDW 2.pngCDW ring.pngCDW 2.pngCDW ring.png
CDW ring.pngCDW 2.pngCDW ring.pngCDW 2.pngCDW ring.pngCDW 2.pngCDW ring.png
Symmetriegruppe B4, [3,3,4]
Eigenschaften konvex

Der Tesserakt [ˈtɛsərakt] (von altgriechisch τέσσερες ἀκτίνες tésseres aktínes, deutsch ‚vier Strahlen‘) ist eine Übertragung des klassischen Würfelbegriffs auf vier Dimensionen. Man spricht dabei auch von einem vierdimensionalen Hyperwürfel. Der Tesserakt verhält sich zum Würfel wie der Würfel zum Quadrat. Er hat 16 Ecken, 32 gleich lange Kanten, 24 quadratische Flächen, und wird durch 8 würfelförmige Zellen begrenzt. Diese Zellen bezeichnet man auch als Begrenzungswürfel des Tesserakts. In jeder Ecke treffen 4 Kanten, 6 Flächen und 4 Zellen jeweils senkrecht aufeinander.

Die Bilder in diesem Artikel sind als Bilder von Tesserakten unter Parallelprojektionen zu verstehen. Unten im ersten Bild erkennt man einen blauen und einen gelben Würfel, die durch sechs weitere rhomboedrisch verzerrte Begrenzungswürfel verbunden sind. Beim dreidimensionalen Netz des Tesserakts (links im ersten Bild) sind alle acht Begrenzungswürfel in den dreidimensionalen Raum gefaltet, so wie die Seitenflächen eines dreidimensionalen Würfels in ein Netz aus sechs Quadraten entfaltet werden können. Es gibt 261 verschiedene Arten, einen Tesserakt zu entfalten.

Im folgenden Bild ist ein Netz des Tesserakts links zu sehen, und rechts unten eine zweidimensionale Parallelprojektion des Tesserakts.

Netz und Parallelprojektion des Tesseraktes

Die längste Diagonale eines Hyperwürfels entspricht der Quadratwurzel seiner Dimensionsanzahl multipliziert mit seiner Kantenlänge. Beim Tesserakt ist daher die längste Diagonale zwei Kantenlängen lang. Wenn man bei einem Tesserakt seine acht gegenüberliegenden Begrenzungswürfel paarweise miteinander verheftet, entsteht ein 4-Torus.

Inhaltsverzeichnis

Projektionen in 2 Dimensionen


Die Konstruktion eines Hyperwürfels kann man sich folgendermaßen vorstellen:

Es ist zwar schwer vorstellbar, aber möglich, Tesserakte in drei- oder zweidimensionale Räume zu projizieren. Außerdem werden Projektionen in die zweite Dimension aufschlussreicher, wenn man die projizierten Eckpunkte umordnet. Mit dieser Methode kann man Bilder erhalten, die nicht mehr die Raumbeziehungen innerhalb des Tesserakts widerspiegeln, aber die Verbindungsstruktur der Eckpunkte, wie folgende Beispiele zeigen:

Ein Tesserakt wird im Prinzip durch zwei verbundene Würfel gebildet. Das Schema ist der Konstruktion eines Würfels von zwei Quadraten ähnlich: Stellen Sie zwei Kopien des niedrigerdimensionalen Würfels nebeneinander und verbinden Sie die entsprechenden Scheitelpunkte. Jede Kante eines Tesserakts ist von derselben Länge. Acht Würfel, die miteinander verbunden sind.

Tesserakte sind auch zweiteilige Graphen, genau wie Linien, Quadrate und Würfel.

Projektionen in 3 Dimensionen


Die Zelle-Zuerst-Parallelprojektion des Tesserakts in den dreidimensionalen Raum hat eine würfelförmige Hülle. Die nächsten und entferntesten Flächen werden auf den Würfel projiziert und die übrigen 6 Zellen werden auf die quadratischen Flächen des Würfels projiziert.

Die Fläche-Zuerst-Parallelprojektion des Tesserakts in den 3-dimensionalen Raum hat eine quaderförmige Hülle. Zwei Paare der Zellen projizieren die obere und untere Hälfte der Hülle und die 4 übrigen Zellen werden auf die Seitenflächen projiziert.

Die Kante-Zuerst-Parallelprojektion des Tesserakts in den dreidimensionalen Raum hat eine Hülle in der Form eines hexagonalen Prismas. Sechs Zellen werden auf rhombische Prismen projiziert, die im hexagonalen Prisma ausgelegt sind, analog dazu, wie die Flächen eines 3D-Würfels auf eine hexagonale Hülle in der Ecke-Zuerst-Projektion ausgelegt sind. Die zwei übrigen Zellen sind auf die Basen des Prismas projiziert.

Die Ecke-Zuerst-Parallelprojektion des Tesserakts in den dreidimensionalen Raum hat eine rhombische dodekaederförmige Hülle.

Bildergalerie


Stereographic polytope 8cell.png
Stereografische Projektion
(Die Kanten sind auf eine Hyperkugel projiziert)
Hypercubecentral.svg
Einfache Ecken-Grafik
8-cell-simple.gif
Eine 3D-Projektion eines 8-Zellers, der eine einfache Rotation um eine Ebene, die die Figur von vorne links nach hinten rechts und von oben nach unten teilt, ausführt.
Tesseract.gif
Eine 3D-Projektion eines 8-Zellers, der eine doppelte Rotation um zwei orthogonale Ebenen ausführt.
Orthogonale Projektion
Hypercubecubes.svg Hypercubeorder.svg Hypercubestar.svg
Tesseract2.svg
Ein Netz eines Tesserakts.
(Animation ansehen.)
3D stereographic projection tesseract.PNG
Eine stereografische 3D-Projektion eines Tesserakts.

In Medien


Siehe auch


Literatur


Weblinks


WiktionaryWiktionary: Tesserakt – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen



Kategorien: Geometrie



Quelle: Wikipedia - https://de.wikipedia.org/wiki/Tesserakt (Autoren [Versionsgeschichte])    Lizenz: CC-by-sa-3.0

Veränderungen: Alle Bilder und die meisten Designelemente, die mit ihnen in Verbindung stehen, wurden entfernt. Icons wurden teilweise durch FontAwesome-Icons ersetzt. Einige Vorlagen wurden entfernt (wie „Lesenswerter Artikel“, „Exzellenter Artikel“) oder umgeschrieben. CSS-Klassen wurden zum Großteil entfernt oder vereinheitlicht.
Wikipedia spezifische Links, die nicht zu Artikeln oder Kategorien führen (wie „Redlink“, „Bearbeiten-Links“, „Portal-Links“) wurden entfernt. Alle externen Links haben ein zusätzliches FontAwesome Icon erhalten. Neben weiteren kleinen Designanpassungen wurden Media-Container, Karten, Navigationsboxen, gesprochene Versionen & Geo-Mikroformate entfernt.


Stand der Informationen: 20.10.2019 07:37:06 CEST - Wichtiger Hinweis Da die gegebenen Inhalte zum angegebenen Zeitpunkt maschinell von Wikipedia übernommen wurden, war und ist eine manuelle Überprüfung nicht möglich. Somit garantiert LinkFang.org nicht die Richtigkeit und Aktualität der übernommenen Inhalte. Sollten die Informationen mittlerweile fehlerhaft sein oder Fehler in der Darstellung vorliegen, bitten wir Sie darum uns per zu kontaktieren: E-Mail.
Beachten Sie auch : Impressum & Datenschutzerklärung.