Regionalisierung (Geostatistik) - de.LinkFang.org

Regionalisierung (Geostatistik)


Unter Regionalisierung versteht man in der Geostatistik die Übertragung von Punktdaten auf die Fläche. Dieser Vorgang spielt natürlich nicht nur in diesem Bereich eine Rolle, der sich schwerpunktmäßig damit befasst. Regionalisierung ist vielmehr überall dort von großer Wichtigkeit, wo Daten punktuell, also stichprobenartig, aufgenommen werden und anschließend flächenhaft dargestellt werden sollen. Klassische Beispiele sind Hydrologie, Meteorologie, Bodenkunde oder auch die Vermessungskunde.

Inhaltsverzeichnis

Verfahren


Thiessen-Polygone

Eine sehr einfache Möglichkeit der Regionalisierung, die auch leicht per Hand durchzuführen ist, bieten die Thiessen- oder Voronoi-Polygone. Dabei wird über eine Mittelsenkrechten-Konstruktion die Gesamtfläche ohne Lücken in einzelne Polygone eingeteilt. Im Ergebnis liegt jeder Punkt in einem Polygon seinem Referenzpunkt näher, als jedem anderen Punkt. Der Wert des Referenzpunktes eines Polygons wird nun dem gesamten Polygon zugewiesen.

Der Vorteil dieses Verfahrens ist die Möglichkeit sogar Nominaldaten zu regionalisieren. Ein großer Nachteil sind allerdings Sprünge an den Polygon-Kanten.

Interpolationsverfahren

Interpolationsverfahren berechnen unter Einbeziehung der bekannten Punkte für jeden unbekannten Punkt der Fläche einen Wert. Gehen dabei alle Messpunkte ein, spricht man von einem globalen, gehen hingegen nur Messpunkte einer definierten Umgebung ein, von einem lokalen Verfahren. Grundlage vieler Interpolationsverfahren sind Netze, wie beispielsweise ein TIN (Triangulated Irregular Network).

Inverse Distanzgewichtung

Bei der Inversen Distanzgewichtung (Englisch: Inverse Distance Weighting) bekommt ein unbekannter Punkt ein gewichtetes Mittel benachbarter Punktwerte zugewiesen. Das Gewicht wird dabei in Abhängigkeit vom Abstand berechnet:

\({\displaystyle \mathrm {w} ={\frac {1}{\mathrm {d} ^{\mathrm {k} }}}}\)

wobei w die Wichtung bzw. der Wichtungsfaktor und d die Distanz zwischen dem bekannten und dem unbekannten Punkt ist. Je größer die Potenz k gewählt wird, desto geringer ist der Einfluss weiter entfernter Punkte.

Splines

Splines sind Ausgleichskurven die auf der Basis von Polynomen höherer Ordnung berechnet werden. Sie sind relativ leicht berechenbar und liefern sehr glatte Grenzen. Der Nachteil ist, dass Polynome höherer Ordnung unrealistisch hohe oder niedrige Werte liefern können.

Kriging

Das wohl beste Interpolationsverfahren ist das Kriging. Hier erfolgt zunächst eine statistische Analyse der Daten (Semivariogrammanalyse), bei der ein möglichst guter Schätzer der Korrelation zwischen Entfernung und Wichtung ermittelt wird. Mit Hilfe dieses Schätzers kann anschließend interpoliert werden.

Kriging liefert im Allgemeinen sehr gute Regionalisierungsergebnisse. Vorteilhaft ist außerdem, die Möglichkeit den Restfehler zu berechnen – man kann also eine Aussage über die Genauigkeit des Ergebnisses machen.

Programme











Kategorien: Geostatistik




Stand der Informationen: 23.11.2020 10:26:53 CET

Quelle: Wikipedia (Autoren [Versionsgeschichte])    Lizenz: CC-by-sa-3.0

Veränderungen: Alle Bilder und die meisten Designelemente, die mit ihnen in Verbindung stehen, wurden entfernt. Icons wurden teilweise durch FontAwesome-Icons ersetzt. Einige Vorlagen wurden entfernt (wie „Lesenswerter Artikel“, „Exzellenter Artikel“) oder umgeschrieben. CSS-Klassen wurden zum Großteil entfernt oder vereinheitlicht.
Wikipedia spezifische Links, die nicht zu Artikeln oder Kategorien führen (wie „Redlink“, „Bearbeiten-Links“, „Portal-Links“) wurden entfernt. Alle externen Links haben ein zusätzliches FontAwesome Icon erhalten. Neben weiteren kleinen Designanpassungen wurden Media-Container, Karten, Navigationsboxen, gesprochene Versionen & Geo-Mikroformate entfernt.

Wichtiger Hinweis Da die gegebenen Inhalte zum angegebenen Zeitpunkt maschinell von Wikipedia übernommen wurden, war und ist eine manuelle Überprüfung nicht möglich. Somit garantiert LinkFang.org nicht die Richtigkeit und Aktualität der übernommenen Inhalte. Sollten die Informationen mittlerweile fehlerhaft sein oder Fehler in der Darstellung vorliegen, bitten wir Sie darum uns per zu kontaktieren: E-Mail.
Beachten Sie auch : Impressum & Datenschutzerklärung.