Phasenraum - de.LinkFang.org

Phasenraum



Der Phasenraum beschreibt die Menge aller möglichen Zustände eines dynamischen Systems. Ein Zustand wird durch einen Punkt im Phasenraum eindeutig abgebildet. In der Mechanik besteht er aus (verallgemeinerten) Ortskoordinaten (Konfigurationsraum) und zugehörigen (verallgemeinerten) Impulsen (siehe Hamilton-Mechanik).

Inhaltsverzeichnis

Hauptteil


Bei \({\displaystyle n}\) Freiheitsgraden (Anzahl generalisierter Koordinaten oder Ortskoordinaten) ist der Phasenraum \({\displaystyle 2n}\)-dimensional. Beispielsweise hat ein Gasteilchen im dreidimensionalen Raum \({\displaystyle n=3}\) Freiheitsgrade, mit den zugehörigen Impulsen sind das \({\displaystyle 6}\) Phasenraumkoordinaten. Ein System (Gas) von \({\displaystyle N}\) Teilchen hat einen \({\displaystyle 6N}\)-dimensionalen Phasenraum. Es werden aber auch Phasenräume in anderen Anwendungen außerhalb der Mechanik untersucht.

Die zeitliche Entwicklung eines Punktes im Phasenraum wird durch Differentialgleichungen beschrieben und durch Trajektorien (Bahnkurven, Orbit) im Phasenraum dargestellt. In der Hamilton-Mechanik sind dies Differentialgleichungen erster Ordnung in der Zeit (kanonische Gleichungen) und durch einen Anfangspunkt eindeutig festgelegt (ist die Hamilton-Funktion zeitunabhängig, sind dies autonome Differentialgleichungen). Dementsprechend kreuzen sich zwei Trajektorien im Phasenraum auch nicht,[1] da an einem Kreuzungspunkt der weitere Verlauf nicht eindeutig ist. Geschlossene Kurven beschreiben oszillierende (periodische) Systeme.

Für Systeme mit bis zu drei Variablen kann der Phasenraum graphisch dargestellt werden. Insbesondere für zwei Variable kann man so die Bewegung (Trajektorien, Phasenraumfluss als Vektorfeld) in einem Phasenraumporträt oder Phasenporträt anschaulich darstellen und qualitativ analysieren (Phasenraumanalyse, Nullklinen und Fixpunkte).

Der historische Ursprung der Verwendung von Phasenräumen wird häufig auf Joseph Liouville zurückgeführt – wegen des Satzes von Liouville (1838), dass bei konservativen Systemen (mit Energieerhaltung) das Phasenraumvolumen benachbarter Trajektorien zeitlich konstant ist. Liouville hatte aber kein mechanisches System im Auge, sondern bewies den Satz für allgemeine gewöhnliche Differentialgleichungen erster Ordnung, die Verbindung zur Mechanik schlug erst Carl Gustav Jacobi vor.[2] Das Phasenraumkonzept entstand erst, nachdem im weiteren Verlauf des 19. Jahrhunderts die Geometer zur Betrachtung höherdimensionaler Räume übergegangen waren und die erste Verwendung des Phasenraums im heutigen Sinn war bei Ludwig Boltzmann 1872[3] im Rahmen seiner Untersuchungen der statistischen Mechanik, was 1879 von James Clerk Maxwell übernommen wurde[4]. Das Konzept fand dann Verwendung in den Vorlesungen von Boltzmann und Josiah Willard Gibbs zur statistischen Mechanik, im Artikel zur statistischen Mechanik in der Enzyklopädie der mathematischen Wissenschaften von 1911 von Paul Ehrenfest und Tatjana Ehrenfest (die die Bezeichnung \({\displaystyle \Gamma }\) für den Phasenraum einführten) und in der qualitativen Theorie der Differentialgleichungen durch Henri Poincaré.

Ein dynamisches System, dessen Trajektorien den gesamten Phasenraum ausfüllen, also jedem Punkt im Phasenraum beliebig nahe kommen, nennt man ergodisch, siehe auch Ergodenhypothese. Bei konservativen mechanischen Systemen (abgeschlossene Systemen) ist nach dem Satz von Liouville das Phasenraumvolumen benachbarter Trajektorien zeitlich konstant, bei dissipativen Systemen nimmt es ab (offene Systeme).

Mathematisch ist der Phasenraum der Hamiltonschen Mechanik ein Beispiel für eine Symplektische Geometrie und die Hamiltonsche Mechanik nach den Worten von Wladimir Arnold ist die Geometrie des Phasenraums[5]. Da die Impulse als Ableitungen der Hamiltonfunktion nach den generalisierten Koordinaten definiert sind, ist der Phasenraum dort ein Kotangentialbündel über dem Konfigurationsraum.

In der Quantenmechanik drückt die Heisenbergsche Unschärferelation eine Quantisierung des Phasenraums aus. In der älteren Quantentheorie erfolgt dies durch die Bohr-Sommerfeld Quantisierung. Übergänge von Verteilungsfunktionen vom klassischen zum quantenmechanischen Phasenraum (und umgekehrt) liefern die Wigner-Funktion und Weyl-Quantisierung.

Beispiel einer Phasenraumanalyse


Das Phasenraumporträt gibt eine Möglichkeit, die zeitlichen Entwicklungen dynamischer Systeme graphisch zu analysieren. Dazu werden nur die dynamischen Gleichungen des Systems benötigt, eine explizite Darstellung der Zeitentwicklung, etwa durch analytisches Lösen einer Differentialgleichung, ist nicht nötig.

Als Beispiel folgen einige Elemente der Phasenraumanalyse in einem zweidimensionalen System \({\displaystyle {x,y}}\), das durch die Differentialgleichungen (\({\displaystyle x'={\frac {\mathrm {d} x}{\mathrm {d} t}}}\), \({\displaystyle y'={\frac {\mathrm {d} y}{\mathrm {d} t}}}\))

\({\displaystyle x'=f(x,y)}\)
\({\displaystyle y'=g(x,y)}\)

beschrieben ist:

Einzelnachweise


  1. Es kann allerdings der Fall auftreten, dass im Phasenraumporträt zwei Kurven einander schneiden wie die Separatrix beim Pendel, der Kreuzungspunkt wird aber bei der Bewegung auf Trajektorien des Systems nicht erreicht.
  2. David Nolte: The tangled tale of phase space. Physics Today, April 2010, S. 33.
  3. Boltzmann, Wien. Ber., 66, 1872, S. 275.
  4. Maxwell, Trans. Cambridge Phil. Soc., Band 12, 1879, S. 547.
  5. Arnold: Mathematical methods of classical mechanics. Springer, 1989, S. 161.
  6. Steven H. Strogatz: Nonlinear Dynamics And Chaos. Westview Press, 2000, ISBN 978-0-7382-0453-6, S. 159.

Siehe auch


Literatur


Weblinks





Kategorien: Klassische Mechanik | Theorie dynamischer Systeme | Statistische Physik



Quelle: Wikipedia - https://de.wikipedia.org/wiki/Phasenraum (Autoren [Versionsgeschichte])    Lizenz: CC-by-sa-3.0


Veränderungen: Alle Bilder und die meisten Designelemente, die mit ihnen in Verbindung stehen, wurden entfernt. Icons wurden teilweise durch FontAwesome-Icons ersetzt. Einige Vorlagen wurden entfernt (wie „Lesenswerter Artikel“, „Exzellenter Artikel“) oder umgeschrieben. CSS-Klassen wurden zum Großteil entfernt oder vereinheitlicht.
Wikipedia spezifische Links, die nicht zu Artikeln oder Kategorien führen (wie „Redlink“, „Bearbeiten-Links“, „Portal-Links“) wurden entfernt. Alle externen Links haben ein zusätzliches FontAwesome Icon erhalten. Neben weiteren kleinen Designanpassungen wurden Media-Container, Karten, Navigationsboxen, gesprochene Versionen & Geo-Mikroformate entfernt.


Stand der Informationen: 05.05.2020 12:02:40 CEST - Wichtiger Hinweis Da die gegebenen Inhalte zum angegebenen Zeitpunkt maschinell von Wikipedia übernommen wurden, war und ist eine manuelle Überprüfung nicht möglich. Somit garantiert LinkFang.org nicht die Richtigkeit und Aktualität der übernommenen Inhalte. Sollten die Informationen mittlerweile fehlerhaft sein oder Fehler in der Darstellung vorliegen, bitten wir Sie darum uns per zu kontaktieren: E-Mail.
Beachten Sie auch : Impressum & Datenschutzerklärung.