Möbiusband - de.LinkFang.org

Möbiusband

Ein Möbiusband, Möbiusschleife oder Möbius’sches Band ist eine Fläche, die nur eine Kante und eine Seite hat. Sie ist nicht orientierbar, das heißt, man kann nicht zwischen unten und oben oder zwischen innen und außen unterscheiden.

Es wurde im Jahr 1858 unabhängig voneinander von dem Göttinger Mathematiker und Physiker Johann Benedict Listing und dem Leipziger Mathematiker und Astronomen August Ferdinand Möbius beschrieben.[1]

Inhaltsverzeichnis

Beschreibung


Ein Möbiusband ist leicht herzustellen, indem man einen längeren Streifen Papier mit beiden Enden ringförmig zusammenklebt, ein Ende aber vor dem Zusammenkleben um 180° verdreht.

Solche Möbiusbänder besitzen eine Mittellinie, die keinen Kreis einnehmen kann – es sei denn, das Band wird örtlich gedehnt. Die Form, die ein solches Band ungedehnt einnehmen kann, wird vollständig durch den Verlauf der Mittellinie beschrieben.[2]

Möbiusbänder, deren Mittellinie auch im entspannten Zustand ein Kreis ist, können nicht aus einem geraden zweidimensionalen Papierstreifen gefertigt werden – sie besitzen entlang ihres Umfanges ungleich geformte Teilelemente, aus denen zusammengesetzt sie gedacht werden können.

Möbiusbänder sind chiral.

Das Möbiusband geht derart in sich selbst über, dass man, wenn man auf einer der scheinbar zwei Seiten beginnt, die Fläche einzufärben, zum Schluss das ganze Objekt gefärbt hat.

Andere interessante Effekte entstehen, wenn man auf dem Band eine Mittellinie oder zwei zur Mittellinie parallele Linien einzeichnet und das Band entlang dieser Linie(n) aufschneidet, also es scheinbar halbiert oder drittelt. Im ersten Fall, also beim Durchschneiden entlang der Mittellinie, entsteht ein zweifach verdrillter (um 720° in sich verdrehter) Ring mit zwei Seiten und zwei Rändern. Im zweiten Fall entstehen zwei Objekte: Ein Möbiusband und ein zweifach verdrillter Ring, die ineinander hängen. Dieses Spiel kann man mit beliebig kleiner Einteilung fortsetzen: „viertelt“ man das Band, entstehen zwei doppelt verdrillte Bänder, die nicht nur ineinander hängen, sondern auch noch einmal häufiger umeinander geschlungen sind; „fünftelt“ man es, entsteht dieselbe Figur mit einem zusätzlichen Möbiusband, das in den beiden Ringen hängt; „sechstelt“ man das Band, erhält man zwei Ringe, die sich doppelt umschlingen und von einem weiteren Ring doppelt umschlungen werden, wobei der äußere und die beiden inneren Ringe beliebig untereinander austauschbar sind; „siebtelt“ man es wiederum, kommt wieder ein Möbiusband hinzu, das in den drei Ringen hängt usw. Ist n der Nenner des Bruchteils, in den man das Band scheinbar einteilt, und ist n gerade, also n = 2r, so erhält man r Ringe; ist n ungerade, n = 2r+1, so ist zusätzlich ein Möbiusband durch die Ringe geschlungen.

Mathematisch gesehen ist das Möbiusband eine nicht-orientierbare Mannigfaltigkeit. Eine weitere Fläche, die in diese Kategorie gehört, ist die Kleinsche Flasche; man kann eine Kleinsche Flasche so in zwei Teile zerlegen, dass aus ihr zwei Möbiusbänder entstehen.

Das mathematische Symbol für die Unendlichkeit wird manchmal fälschlicherweise als Möbiusband interpretiert.

In der Natur


In Kunst und Literatur


Berühmte Darstellungen des Möbiusbandes in der Kunst gibt es z. B. von M. C. Escher (Möbiusband I und II, 1963) sowie in neuerer Zeit von Gideon Möbius-Sherman. Auch der argentinische Spielfilm Moebius setzt sich mit dem Thema auseinander. In der Literatur wird das Möbiusband ebenfalls thematisiert: Die Struktur von John Barths Kurzgeschichtenserie „Lost in the Funhouse“ (dt. „Ambrose im Juxhaus“) basiert auf dem Unendlichkeits- oder Wiederholungsprinzip (z. B. fehlende Mitte) des Möbiusbandes. Auch wird dem Buch ein Möbiusband mitgeliefert, das postmoderne Literaturansätze („Frame-Tale“) spiegelt. Es ist beschriftet mit: „Once upon a time there was a story that began once upon a time …“. Diese Form der Selbstreferenz ist typisch für sogenannte Seltsame Schleifen. Der Lyriker Erich Fried bezieht sich in seinem Gedicht „Topologik“ auf das Möbiusband: „Ich habe mir ein Möbiusherz gefasst, das sich in ausweglose Streifen schneidet.“ Max Bill schuf ab den 1930er Jahren zahlreiche Plastiken, die den visuellen Repräsentationen des Möbiusbandes entsprechen: z. B. 'Unendliche Schleife' (1935/37), 'Kontinuität' (Zürichsee; 1947, zerstört 1948) oder 'Unendliche Schleife' (Stadtgarten Essen, an der Hohenzollernstraße; 1974).[5] Seine Skulptur Kontinuität (1986) stellt jedoch kein Möbiusband dar, entgegen gängiger Auffassung.

Auch in der seit 1986 existierenden Romanreihe Necroscope des englischen Autors Brian Lumley spielt das Möbiusband eine wichtige Rolle. Es ist das Symbol einiger Figuren, vor allem aber bedeutend für die Hauptperson Harry Keogh. Er erlernt die Fähigkeit des Zeitreisens mit Hilfe des sogenannten Möbiuskontinuums, das sich ähnlich dem Möbiusband verhält.

Ebenso wird das Möbiusband in der Perry-Rhodan-Serie thematisiert und bildet hier die dreidimensionale Modellbeschreibung für die beiden Seiten des n-dimensionalen Universums (Arresum und Paresum).

Lars Gustafsson entwickelt das Möbiusband in seinem Roman Frau Sorgedahls schöne weiße Arme weiter zu einer Möbius-Zeitflasche, in der wir gefangen sind. Außerhalb unseres Lebens gibt es nichts.

In der Manga-Reihe Angel Sanctuary wird das Schicksal des hohen Engels Alexiel und der steten Wiedergeburt seiner Seele in menschliche Körper, denen ein grausames und blutiges Schicksal vorherbestimmt ist, mit einer Möbius-Schleife verglichen.[6]

Im 2011 in deutscher Sprache erschienenen Roman Karte und Gebiet von Michel Houellebecq ist ein Möbiusband auf der Grabplatte der Romanfigur Michel Houellebecq eingemeißelt.

Im Jahr 2011 hat der Student der Robotik Aaron Hoover an der University of California, Berkeley ein Möbius-Getriebe als technische Spielerei mittels 3D-Druck hergestellt.[7]

Das Möbiusschach ist eine Variante des Zylinderschach, bei der man sich beim „Anschluss“ der Längsseiten noch eine Verdrillung des Spielfeldes hinzudenkt.

Im Videospiel Mario Kart 8 stellt die Rennstrecke Mario Circuit ein Möbius-Band dar. Auch die 8 im Logo zeigt ein Möbius-Band.

In der Mode wurden auch schon Möbius-Schals entworfen.[8]

Im Schauspiel Solaris nach Stanislaw Lem von Bettina Bruinier und Katja Friedrich am Münchner Volkstheater (2011) ist ein von einem Modellauto befahrenes Möbiusband wichtiger Bestandteil der Inszenierung (Bühnenbild: Markus Karner).[9]

Die Logos der Commerzbank und des deutschen Gebäudereiniger-Handwerks zeigen ein Möbiusband.

Die DDR-Avantgarde-Band AG. Geige widmete dem Möbiusband ein Lied auf dem 1989 erschienenen Album Trickbeat.

In der Technik


Mechanik

Unterhaltungselektronik

Elektrotechnik

Physik

Chemie

Nanotechnologie

In der Mathematik


Analysis

Das Möbiusband kann als Fläche mittels der folgenden Parameterdarstellung gezeichnet werden:

x(r, \alpha) = \cos(\alpha) \cdot \left(1+\frac{r}{2}\cos\frac{\alpha}{2}\right)
y(r, \alpha) = \sin(\alpha) \cdot \left(1+\frac{r}{2}\cos\frac{\alpha}{2}\right)
z(r, \alpha) = \frac{r}{2} \sin\frac{\alpha}{2}

wobei 0\leq \alpha < 2\pi und -1\leq r \leq 1. Damit wird ein Möbiusband mit einer Breite von 1 erstellt, dessen Mittellinie der in der xy-Ebene liegende Kreis mit Radius 1 und Zentrum (0,0,0) ist. Der Winkel \alpha hat seinen Scheitel im Zentrum; während er sich ändert, führt die Variation von r zur Fläche, die sich zwischen der einzigen Kante spannt. Wie im Bild rechts leicht zu erkennen ist, handelt es sich nicht um ein aus einem Papierstreifen zu fertigendes Möbiusband – im waagerechten Teil ähneln die Teilelemente symmetrischen Trapezen.

Mit Hilfe von Zylinderkoordinaten (r, \theta, z) wird durch die folgende Gleichung eine unbeschränkte Version des Möbiusbandes definiert:

\log(r) \cdot \sin(\theta/2) = z \cdot \cos(\theta/2).

Topologie

Die Topologie bietet einen mathematischen Weg, ein Möbiusband durch das gegensinnige Zusammenkleben der Enden eines Papierstreifens herzustellen. Dort wird ein Möbiusband als Quotientenraum des Quadrats (x,y) \in [0,1] \times [0,1] definiert, wobei zwei gegenüberliegende Seiten durch die Äquivalenzrelation (0,y) \sim (1,1-y) für 0 \leq y \leq 1 miteinander identifiziert werden. Das nebenstehende Diagramm verdeutlicht dies.

Spinoren

Dieser Artikel oder nachfolgende Abschnitt ist nicht hinreichend mit Belegen (beispielsweise Einzelnachweisen) ausgestattet. Angaben ohne ausreichenden Beleg könnten demnächst entfernt werden. Bitte hilf Wikipedia, indem du die Angaben recherchierst und gute Belege einfügst.

Man kann den Rand des Möbiusbandes auch als Spinor auffassen: Die Gruppe \operatorname{Spin}(1/2) sei durch 0\leq\phi<4\pi parametrisiert. Den Spinor \phi\mapsto\mathrm e^{\mathrm i\phi/2} kann man als Teilmenge

\{(\mathrm e^{\mathrm i\phi/2},\mathrm e^{\mathrm i\phi})\mid0\leq\phi\leq4\pi\}\subset\mathbb C\times S^1

auffassen; dies ist genau der Rand des Möbiusbandes

\{(r\mathrm e^{\mathrm i\phi/2},\mathrm e^{\mathrm i\phi})\mid0\leq r\leq1,0\leq\phi\leq4\pi\}\subset\mathbb C\times S^1.

Variationsrechnung

Neue Erkenntnisse zur mathematischen Beschreibung eines Möbiusbands wurden im Jahr 2007 durch die Wissenschaftler E.L. Starostin und G.H.M. van der Heijden publiziert.[18] Sie haben insbesondere die Form mathematisch berechnet, die ein aus einem Band gefertigtes Möbiusband von selbst einzunehmen bestrebt ist, um so den energieärmsten Zustand anzunehmen.

Literatur


Weblinks


 Commons: Möbiusband  – Sammlung von Bildern, Videos und Audiodateien

Einzelnachweise


  1. Listing biography
  2. Numerator: Rätsel des Möbiusbands gelöst - Wissenschaft - SPIEGEL ONLINE - Nachrichten
  3. IEEE Transactions on Plasma Science, Vol. 30, No. 1, Feb 2002 doi:10.1109/TPS.2002.1003898.
  4. Protein Spotlight Issue 20: The protein with a topological twist
  5. z. B. Anne Schloen: Die Renaissance des Goldes. Gold in der Kunst des 20. Jahrhunderts. Kapitel 2.2. Dissertation an der Philosophischen Fakultät der Universität zu Köln von 2006. Online verfügbar , abgerufen am 23. Juni 2013.
  6. Angel Sanctuary Band 3, Carlsen Comics 1995, S. 92
  7. Charlie Sorrel: Real Möbius Gear Will Melt Your Mind. In: Wired.com. 11. April 2011, abgerufen am 13. April 2011 (englisch).
  8. Lavendelhexe: Der Möbiusschal. In: Lavendelhexe.net. 31. Dezember 2009, abgerufen am 13. April 2011.
  9. Anne Steiner: Die Inszenierung am Volkstheater - Bettina Bruinier (Regie). In: Solaris nach Stanislaw Lem – Materialien zur Inszenierung. 27. November 2011
  10. NTZ, Heft 1, Jan. 1964, S. 24–34.
  11. W. Hilberg: A 500 Mc Twisted Ring Counter Whose Resolution Is Limited By Gate Switching Speed Only. In: Nuclear Instruments and Methods. Band 33, 1965, S. 322–324, doi:10.1016/0029-554X(65)90064-9 .
  12. J. M. Pond: Mobius dual-mode resonators and bandpass filters. In: IEEE Trans. Microwave Theory and Tech. Band 48, 2000, S. 2465–2471, doi:10.1109/22.898999 .
  13. Patent US3267406 : Non-inductive electrical resistor. Veröffentlicht am 16. August 1966, Erfinder: Richard L. Davis.
  14. Raul Perez-Enriquez: A Structural Parameter for High Tc Superconductivity from an Octahedral Moebius Strip in RBaCuO:123 type Perovskites. In: Rev. Mex. Fis. 48 supplement 1, 2002, S. 262–267, arxiv:cond-mat/0308019 .
  15. Gaston R. Schaller and Rainer Herges: Möbius molecules with twists and writhes, Chem. Comm 2013, 1254–1260.
  16. Oleg Lukin und Fritz Vögtle: Knotting and Threading of Molecules: Chemistry and Chirality of Molecular Knots and Their Assemblies. In: Angew. Chem. Int. Ed. Band 44, 2005, S. 1456–1477, doi:10.1002/anie.200460312 .
  17. Atsushi Yamashiro, Yukihiro Shimoi, Kikuo Harigaya und Katsunori Wakabayashi: Novel electronic states in graphene ribbons—competing spin and charge orders. In: Physica E. Band 22, 2006, S. 688–691, doi:10.1016/j.physe.2003.12.100 , arxiv:cond-mat/0309636v1 .
  18. The shape of a Mobius strip : Abstract: Nature Materials



Kategorien: Fläche (Mathematik) | August Ferdinand Möbius



Quelle: Wikipedia - https://de.wikipedia.org/wiki/Möbiusband (Autoren [Versionsgeschichte])    Lizenz: CC-by-sa-3.0

Veränderungen: Alle Bilder und die meisten Designelemente, die mit ihnen in Verbindung stehen, wurden entfernt. Icons wurden teilweise durch FontAwesome-Icons ersetzt. Einige Vorlagen wurden entfernt (wie „Lesenswerter Artikel“, „Exzellenter Artikel“) oder umgeschrieben. CSS-Klassen wurden zum Großteil entfernt oder vereinheitlicht.
Wikipedia spezifische Links, die nicht zu Artikeln oder Kategorien führen (wie „Redlink“, „Bearbeiten-Links“, „Portal-Links“) wurden entfernt. Alle externen Links haben ein zusätzliches FontAwesome Icon erhalten. Neben weiteren kleinen Designanpassungen wurden Media-Container, Karten, Navigationsboxen, gesprochene Versionen & Geo-Mikroformate entfernt.


Stand der Informationen: 19.10.2019 09:11:34 CEST - Wichtiger Hinweis Da die gegebenen Inhalte zum angegebenen Zeitpunkt maschinell von Wikipedia übernommen wurden, war und ist eine manuelle Überprüfung nicht möglich. Somit garantiert LinkFang.org nicht die Richtigkeit und Aktualität der übernommenen Inhalte. Sollten die Informationen mittlerweile fehlerhaft sein oder Fehler in der Darstellung vorliegen, bitten wir Sie darum uns per zu kontaktieren: E-Mail.
Beachten Sie auch : Impressum & Datenschutzerklärung.