Halbachsen der Ellipse - de.LinkFang.org

Halbachsen der Ellipse


(Weitergeleitet von Große_Halbachse)


Als Halbachsen werden die beiden charakteristischen Radien einer Ellipse bezeichnet:

Der Kreis ist eine spezielle Ellipse, bei der diese beide Halbachsen gleich lang sind, in diesem Fall entsprechen beide Halbachsen jeweils dem Radius des Kreises.

Die Hauptachse (der größte Durchmesser, hier \({\displaystyle {\overline {S_{1}S_{2}}}}\)) und die Nebenachse (der kleinste Durchmesser, hier \({\displaystyle {\overline {S_{3}S_{4}}}}\)) werden gemeinsam auch als die Hauptachsen der Ellipse bezeichnet. Haupt- und Nebenachse sind konjugierte Durchmesser. Diese Beziehung bleibt auch bei „schräger“ Betrachtungsweise der Ellipse erhalten, was zur geometrischen Konstruktion von anderen konjugierten Durchmessern genutzt werden kann.

Astronomie


In der Astronomie ist die große Halbachse einer keplerschen Umlaufbahn eines der sechs sogenannten Bahnelemente und wird oft auch ungenau als „mittlere Entfernung“ angegeben und meistens mit a abgekürzt. Sie charakterisiert – zusammen mit der Exzentrizität – die Form von elliptischen Umlaufbahnen verschiedener Himmelskörper.

Solche Körper sind in erster Linie die Planeten und ihre Monde, künstliche Erdsatelliten, die Asteroiden und tausende Doppelsterne.

Nach dem dritten Gesetz von Kepler ist die Umlaufzeit U einer Ellipsenbahn mit a gekoppelt (\({\displaystyle U^{2}/a^{3}=\mathrm {const} }\)). Die Konstante hängt mit der Masse des Zentralkörpers zusammen – in einem Planetensystem also mit der Masse des Zentralsterns.

Die beiden Hauptscheitel nennt man Apsiden, die Hauptachse ist die Apsidenlinie: Wenn ein Körper im Brennpunkt F1 liegt und ein kleinerer Körper ihn auf einer Ellipse umkreist, so spricht man beim kürzesten Abstand (\({\displaystyle {\overline {S_{1}F_{1}}}}\) = ae) von der Periapsis und beim längsten Abstand (\({\displaystyle {\overline {S_{2}F_{1}}}}\) = a+e) von der Apoapsis (Perihel, Aphel bei der Sonne).

In der Periapsis (Perizentrum, gravizentrumsnaher Hauptscheitel) ist die Orbitalgeschwindigkeit maximal, im Apozentrum minimal.

Die tatsächliche mittlere Entfernung ist neben der großen Halbachse auch von der numerischen Exzentrizität \({\displaystyle \varepsilon =e/a}\) abhängig und beträgt

\({\displaystyle a\cdot \left(1+{\frac {\varepsilon ^{2}}{2}}\right)}\)

Geodäsie


In der Geodäsie sind die Achsen der sogenannten Fehlerellipsen ein wichtiges Darstellungsmittel der mittleren beziehungsweise maximalen/minimalen Punktfehler. Bei der Ausgleichung von geodätischen Netzen lässt sich die Genauigkeit, mit der die einzelnen Vermessungspunkte des Netzes bestimmt sind, als Fehlerellipse darstellen.[1]

Einzelnachweise


  1. Erwin Groten: Zur Definition des mittleren Punktfehlers. In: Zeitschrift für Vermessungswesen (ZfV), 11/1969, S. 455–457.








Kategorien: Ebene Geometrie | Himmelsmechanik








Stand der Informationen: 03.07.2020 08:27:47 CEST

Quelle: Wikipedia (Autoren [Versionsgeschichte])    Lizenz: CC-by-sa-3.0

Veränderungen: Alle Bilder und die meisten Designelemente, die mit ihnen in Verbindung stehen, wurden entfernt. Icons wurden teilweise durch FontAwesome-Icons ersetzt. Einige Vorlagen wurden entfernt (wie „Lesenswerter Artikel“, „Exzellenter Artikel“) oder umgeschrieben. CSS-Klassen wurden zum Großteil entfernt oder vereinheitlicht.
Wikipedia spezifische Links, die nicht zu Artikeln oder Kategorien führen (wie „Redlink“, „Bearbeiten-Links“, „Portal-Links“) wurden entfernt. Alle externen Links haben ein zusätzliches FontAwesome Icon erhalten. Neben weiteren kleinen Designanpassungen wurden Media-Container, Karten, Navigationsboxen, gesprochene Versionen & Geo-Mikroformate entfernt.

Wichtiger Hinweis Da die gegebenen Inhalte zum angegebenen Zeitpunkt maschinell von Wikipedia übernommen wurden, war und ist eine manuelle Überprüfung nicht möglich. Somit garantiert LinkFang.org nicht die Richtigkeit und Aktualität der übernommenen Inhalte. Sollten die Informationen mittlerweile fehlerhaft sein oder Fehler in der Darstellung vorliegen, bitten wir Sie darum uns per zu kontaktieren: E-Mail.
Beachten Sie auch : Impressum & Datenschutzerklärung.