Gleichwinkliges Polygon - de.LinkFang.org

Gleichwinkliges Polygon

Ein gleichwinkliges Polygon ist in der Geometrie ein Polygon der euklidischen Ebene, bei dem alle Innenwinkel gleich groß sind. Gleichwinklige Polygone sind von gleichseitigen Polygonen zu unterscheiden, bei denen die Polygonseiten alle gleich lang sind. Ein sowohl gleichwinkliges als auch gleichseitiges Polygon wird regelmäßiges Polygon genannt.

Inhaltsverzeichnis

Definition


Ein Polygon heißt gleichwinklig, wenn die Innenwinkel \alpha ,\beta ,\gamma ,\ldots des Polygons alle gleich groß sind, das heißt, wenn

\alpha =\beta =\gamma =\ldots

gilt. Nachdem sich Innen- und Außenwinkel an den Ecken eines Polygons zu 180° ergänzen, sind äquivalent dazu in einem gleichwinkligen Polygon auch alle Außenwinkel \alpha', \beta', \gamma', \ldots gleich groß.

Beispiele


Eigenschaften


\alpha = \beta = \gamma = \ldots = \frac{n-2}{n} \cdot 180^\circ.
und alle Außenwinkel
\alpha' = \beta' = \gamma' = \ldots = \frac{1}{n} \cdot 360^\circ.

Einzelnachweise


  1. Michael De Villiers: Equiangular cyclic and equilateral circumscribed polygons. In: Mathematical Gazette. Nr. 95, 2011, S. 102–107.

Weblinks





Kategorien: Polygon


Quelle: Wikipedia - https://de.wikipedia.org/wiki/Gleichwinkliges Polygon (Autoren [Versionsgeschichte])    Lizenz: CC-by-sa-3.0

Veränderungen: Alle Bilder und die meisten Designelemente, die mit ihnen in Verbindung stehen, wurden entfernt. Icons wurden teilweise durch FontAwesome-Icons ersetzt. Einige Vorlagen wurden entfernt (wie „Lesenswerter Artikel“, „Exzellenter Artikel“) oder umgeschrieben. CSS-Klassen wurden zum Großteil entfernt oder vereinheitlicht.
Wikipedia spezifische Links, die nicht zu Artikeln oder Kategorien führen (wie „Redlink“, „Bearbeiten-Links“, „Portal-Links“) wurden entfernt. Alle externen Links haben ein zusätzliches FontAwesome Icon erhalten. Neben weiteren kleinen Designanpassungen wurden Media-Container, Karten, Navigationsboxen, gesprochene Versionen & Geo-Mikroformate entfernt.


Stand der Informationen: 12.11.2019 07:43:23 CET - Wichtiger Hinweis Da die gegebenen Inhalte zum angegebenen Zeitpunkt maschinell von Wikipedia übernommen wurden, war und ist eine manuelle Überprüfung nicht möglich. Somit garantiert LinkFang.org nicht die Richtigkeit und Aktualität der übernommenen Inhalte. Sollten die Informationen mittlerweile fehlerhaft sein oder Fehler in der Darstellung vorliegen, bitten wir Sie darum uns per zu kontaktieren: E-Mail.
Beachten Sie auch : Impressum & Datenschutzerklärung.