Geostatistik - de.LinkFang.org

Geostatistik


Die Geostatistik ist ein Teilgebiet der Statistik, welches unter Einbezug der Wahrscheinlichkeitsrechnung ortsabhängige Daten (Geodaten) auswertet und modelliert. Die Hauptanwendung der Geostatistik liegt somit in der stochastischen Validierung von Messdaten und der Approximation über diese hinaus.

Die grundlegende Annahme der Geostatistik ist, dass benachbarte Daten sich ähneln und somit Punkte über die Distanz zueinander korrelieren. So können z. B. Relief- oder Temperaturkarten erstellt werden, ohne dass jeder Punkt vermessen werden muss, da in der Regel zwischen Temperaturen oder Höhenlagen ein Mittel auftritt.

Geostatistische Parameter


Der Schätzwert für eine physikalische Größe (wie die Oberflächentemperatur) an einem Schätzort ist aufgrund der räumlichen Korrelation stärker von den Messwerten benachbarter als von solchen entfernter Messorte abhängig. Für die Abschätzung sind diese benachbarten Messwerte daher stärker zu berücksichtigen. Dabei unterscheidet man zwei Methoden, die nichtstatistischen und die statistischen Interpolationsverfahren, wobei letztere auf einem Geostatistischen Modell (häufig einem speziellen Zufallsfeld) beruhen.

Um herauszufinden, bis zu welcher maximalen Entfernung (Reichweite) und in welchem Maße Messwerte von benachbarten oder weiter entfernten Messwerten abhängen, werden sogenannte experimentelle Semivariogramme modelliert: Für alle Entfernungen (als x-Werte), die jeweils zwei Messorte des Datensatzes zueinander haben, werden die Differenzen der jeweiligen Messwerte (als y-Werte) aufgetragen: Die wachsende Unähnlichkeit mit wachsender Entfernung spiegelt sich in der Zunahme der y-Werte mit steigenden x-Werten bis zu einem bestimmten Grenzwert wider. Diese Abhängigkeit wird mit einer Modellfunktion, zum Beispiel einer quadratischen Funktion, ausgedrückt.

Die Funktion, die aus der Analyse der Messwerte gewonnen wurde, ist die Grundlage für die nachfolgende Interpolation einer Verteilung von Schätzwerten im Raum in einem Verfahren, das als Kriging bezeichnet wird. Dabei erhalten die Messwerte je nach Nähe zum gesuchten Schätzwert in Abhängigkeit vom modellierten Semivariogramm unterschiedliche Gewichtungsfaktoren, mit denen sie in die Berechnung des Schätzwerts eingehen (Gegenbeispiel: arithmetischer Mittelwert als Schätzer: alle Messwerte erhalten ohne Unterschied dasselbe Gewicht).

Voraussetzung für die Interpolation ist, dass im Untersuchungsgebiet die Messwertverteilung homogen ist (Kriterium der Stationarität/Homogenität). Beispiel für Inhomogenität: der Aluminium-Gehalt von Gesteinen eines Untersuchungsgebiets, in dem durch Versatz an einer Störung zwei völlig unterschiedliche Gesteinseinheiten nebeneinander vorliegen und ohne Übergangszone aneinandergrenzen.

Für das Beispiel Oberflächentemperatur eines Sees wäre das Ergebnis des Krigings eine Verteilung von Schätzwerten in der Ebene, die zum Beispiel als Isothermen-Karte oder Oberflächenrelief („fliegender Teppich“) mit der Höhen-Achse als Temperatur-Achse visualisiert werden kann.

Siehe auch


Standardliteratur











Kategorien: Geostatistik




Stand der Informationen: 25.02.2021 09:28:40 CET

Quelle: Wikipedia (Autoren [Versionsgeschichte])    Lizenz: CC-by-sa-3.0

Veränderungen: Alle Bilder und die meisten Designelemente, die mit ihnen in Verbindung stehen, wurden entfernt. Icons wurden teilweise durch FontAwesome-Icons ersetzt. Einige Vorlagen wurden entfernt (wie „Lesenswerter Artikel“, „Exzellenter Artikel“) oder umgeschrieben. CSS-Klassen wurden zum Großteil entfernt oder vereinheitlicht.
Wikipedia spezifische Links, die nicht zu Artikeln oder Kategorien führen (wie „Redlink“, „Bearbeiten-Links“, „Portal-Links“) wurden entfernt. Alle externen Links haben ein zusätzliches FontAwesome Icon erhalten. Neben weiteren kleinen Designanpassungen wurden Media-Container, Karten, Navigationsboxen, gesprochene Versionen & Geo-Mikroformate entfernt.

Wichtiger Hinweis Da die gegebenen Inhalte zum angegebenen Zeitpunkt maschinell von Wikipedia übernommen wurden, war und ist eine manuelle Überprüfung nicht möglich. Somit garantiert LinkFang.org nicht die Richtigkeit und Aktualität der übernommenen Inhalte. Sollten die Informationen mittlerweile fehlerhaft sein oder Fehler in der Darstellung vorliegen, bitten wir Sie darum uns per zu kontaktieren: E-Mail.
Beachten Sie auch : Impressum & Datenschutzerklärung.