Diffusionskoeffizient - de.LinkFang.org

Diffusionskoeffizient



Der Diffusionskoeffizient \({\displaystyle D}\), auch Diffusionskonstante oder Diffusivität genannt, ist ein Transportkoeffizient und dient in den Fickschen Gesetzen zur Berechnung des thermisch bedingten Transports eines Stoffes aufgrund der zufälligen Bewegung der Teilchen. Dabei kann es sich um einzelne Atome in einem Feststoff oder um Teilchen in einem Gas oder einer Flüssigkeit handeln. Der Diffusionskoeffizient ist daher ein Maß für die Beweglichkeit der Teilchen und lässt sich nach der Einstein-Smoluchowski-Gleichung aus dem durchschnittlichen Quadrat der zurückgelegten Wegstrecke \({\displaystyle \langle x^{2}\rangle }\) pro Zeit \({\displaystyle t}\) ermitteln:

\({\displaystyle D={\frac {\langle x^{2}\rangle }{2t}}}\) (oder alternativ mittels der Green-Kubo-Relationen).

Die SI-Einheit des Diffusionskoeffizienten ist daher \({\displaystyle \mathrm {m^{2}/s} }\). Zur Angabe des Diffusionskoeffizienten gehört immer die Angabe, welcher Stoff in welchem Stoff diffundiert, sowie als wichtigste Einflussgröße die Temperatur.

Inhaltsverzeichnis

Diffusionskoeffizienten in Gasen


Beispiele für Diffusionskoeffizienten in Gasen (bei 1 atm)
System Temperatur in °C Diffusionskoeffizient in m²/s
LuftSauerstoff 0 1,76 × 10−5
Luft – Kohlendioxid 8,9 1,48 × 10−5
44,1 1,77 × 10−5
WasserstoffStickstoff 24,1 7,79 × 10−5

Diffusionskoeffizienten in Gasen[1][2] sind stark abhängig von Temperatur und Druck. In erster Näherung gilt, dass eine Verdopplung des Druckes zur Halbierung des Diffusionskoeffizienten führt.

Der Diffusionskoeffizient folgt gemäß der Chapman-Enskog-Theorie folgender Gleichung für zwei gasförmige Stoffe (Indizes 1 und 2):[3]

\({\displaystyle D_{12}={\frac {3}{8}}\left({\frac {N}{\pi }}{\frac {M_{1}+M_{2}}{2M_{1}M_{2}}}\right)^{\frac {1}{2}}{\frac {\left(k_{\mathrm {B} }T\right)^{\frac {3}{2}}}{p\sigma _{12}^{2}\Omega _{12}^{*}}}}\)

mit den physikalischen Größen

Für die Selbstdiffusion (d. h. für den Fall, dass nur eine Teilchensorte vorhanden ist) vereinfacht sich o. g. Zusammenhang zu:[4]

\({\displaystyle D={\frac {1}{3}}{\bar {v}}\,l={\frac {2}{3}}{\frac {1}{n\,d^{2}}}{\sqrt {\frac {k_{\mathrm {B} }\,T}{\pi ^{3}\,m}}}}\)

mit

Diffusionskoeffizienten in Flüssigkeiten


Beispiele für Diffusionskoeffizienten in Wasser (bei unendlicher Verdünnung und 25 °C)
Stoff Diffusionskoeffizient in m²/s
Sauerstoff 2,1 × 10−9
Schwefelsäure 1,73 × 10−9
Ethanol 0,84 × 10−9

Diffusionskoeffizienten in Flüssigkeiten[1] betragen in der Regel etwa ein Zehntausendstel von Diffusionskoeffizienten in Gasen. Sie werden beschrieben durch die Stokes-Einstein-Gleichung:[5]

\({\displaystyle D={\frac {k_{\mathrm {B} }\,T}{6\,\pi \,\eta \,R_{0}}}}\)

mit

Auf dieser Gleichung basieren viele empirische Korrelationen.

Da die Viskosität des Lösungsmittels eine Funktion der Temperatur ist, ist die Abhängigkeit des Diffusionskoeffizienten von der Temperatur nichtlinear.

Diffusionskoeffizienten in Feststoffen


Beispiele für Diffusionskoeffizienten in Feststoffen
System Temperatur in °C Diffusionskoeffizient in m²/s
Wasserstoff in Eisen 10 1,66 × 10−13
50 11,4 × 10−13
100 124 × 10−13
Kohlenstoff in Eisen 800 15 × 10−13
1100 450 × 10−13
Gold in Blei 285 0,46 × 10−13

Diffusionskoeffizienten in Feststoffen[1] sind in der Regel mehrere tausend Mal kleiner als Diffusionskoeffizienten in Flüssigkeiten.

Für die Diffusion in Festkörpern sind Sprünge zwischen verschiedenen Gitterplätzen erforderlich. Dabei müssen die Teilchen eine Energiebarriere E überwinden, was bei höherer Temperatur leichter möglich ist als bei niedrigerer. Dies wird beschrieben durch den Zusammenhang:[6]

\({\displaystyle D=D_{0}\,\exp \left(-{\frac {E}{R\,T}}\right)}\)

mit

D0 lässt sich näherungsweise berechnen als:

\({\displaystyle D_{0}\approx \alpha _{0}^{2}\,N\,\omega }\)

mit

Allerdings empfiehlt es sich, insbesondere Diffusionskoeffizienten in Feststoffen experimentell zu bestimmen.

Effektiver Diffusionskoeffizient


Der effektive Diffusionskoeffizient[7] \({\displaystyle D_{e}}\) beschreibt Diffusion durch den Porenraum poröser Medien. Da er nicht einzelne Poren, sondern den gesamten Porenraum betrachtet, ist er eine makroskopische Größe:

\({\displaystyle D_{e}={\frac {\varepsilon _{t}\,\delta }{\tau }}\,D}\)

mit

Scheinbarer Diffusionskoeffizient


Der scheinbare (apparente) Diffusionskoeffizient[7] erweitert den effektiven Diffusionskoeffizienten um den Einfluss der Sorption.

Für lineare Sorption berechnet er sich zu:

\({\displaystyle D_{a}={\frac {D_{e}}{1+{\frac {K_{d}\,\rho }{\epsilon }}}}}\)

mit

Bei nichtlinearer Sorptionsisotherme ist der scheinbare Diffusionskoeffizient stets eine Funktion der Konzentration, was die Berechnung der Diffusion erheblich erschwert.

Siehe auch


Einzelnachweise


  1. a b c E. L. Cussler: Diffusion – Mass Transfer in Fluid Systems. Cambridge University Press, Cambridge/New York, 1997, ISBN 0-521-56477-8.
  2. T. R. Marrero, E. A. Mason: Gaseous Diffusion Coefficients. In: Journal of Physical and Chemical Reference Data. Band 1, Nr. 1, 1. Januar 1972, ISSN 0047-2689 , S. 3–118, doi:10.1063/1.3253094 (nist.gov [PDF; abgerufen am 8. Oktober 2017]).
  3. a b c J. Hirschfelder, C. F. Curtiss, R. B. Bird: Molecular Theory of Gases and Liquids. Wiley, New York, 1954, ISBN 0-471-40065-3
  4. Franz Durst: Grundlagen der Strömungsmechanik: Eine Einführung in die Theorie der Strömung von Fluiden. Springer, Berlin, 2006, ISBN 3-540-31323-0.
  5. A. Einstein: Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen (PDF; 733 kB), Annalen der Physik. 17, 1905, S. 549ff.
  6. W. Jost: Diffusion in solids, liquids and gases. Academic Press Inc., New York, 1960.
  7. a b P. Grathwohl: Diffusion in natural porous media: Contaminant transport, sorption/desorption and dissolution kinetics. Kluwer Academic Publishers, 1998, ISBN 0-7923-8102-5.



Kategorien: Statistische Physik | Physikalische Chemie



Quelle: Wikipedia - https://de.wikipedia.org/wiki/Diffusionskoeffizient (Autoren [Versionsgeschichte])    Lizenz: CC-by-sa-3.0


Veränderungen: Alle Bilder und die meisten Designelemente, die mit ihnen in Verbindung stehen, wurden entfernt. Icons wurden teilweise durch FontAwesome-Icons ersetzt. Einige Vorlagen wurden entfernt (wie „Lesenswerter Artikel“, „Exzellenter Artikel“) oder umgeschrieben. CSS-Klassen wurden zum Großteil entfernt oder vereinheitlicht.
Wikipedia spezifische Links, die nicht zu Artikeln oder Kategorien führen (wie „Redlink“, „Bearbeiten-Links“, „Portal-Links“) wurden entfernt. Alle externen Links haben ein zusätzliches FontAwesome Icon erhalten. Neben weiteren kleinen Designanpassungen wurden Media-Container, Karten, Navigationsboxen, gesprochene Versionen & Geo-Mikroformate entfernt.


Stand der Informationen: 06.05.2020 04:35:31 CEST - Wichtiger Hinweis Da die gegebenen Inhalte zum angegebenen Zeitpunkt maschinell von Wikipedia übernommen wurden, war und ist eine manuelle Überprüfung nicht möglich. Somit garantiert LinkFang.org nicht die Richtigkeit und Aktualität der übernommenen Inhalte. Sollten die Informationen mittlerweile fehlerhaft sein oder Fehler in der Darstellung vorliegen, bitten wir Sie darum uns per zu kontaktieren: E-Mail.
Beachten Sie auch : Impressum & Datenschutzerklärung.