Bahnelement - de.LinkFang.org

Bahnelement




Bahnelemente beschreiben die Bahn und die Bewegung eines astronomischen Objekts, das den Keplerschen Gesetzen im Schwerefeld eines Himmelskörpers gehorcht (Zweikörperproblem).

Sind keine Bahnstörungen zu berücksichtigen, so genügen zur vollständigen Beschreibung sechs Bahnelemente. Zwei Bahnelemente beschreiben die Gestalt der Bahn, drei Elemente beschreiben die Lage der Bahn im Raum und ein Element ist der Zeitpunkt, an dem der Himmelskörper einen bestimmten Punkt auf der Bahn passiert. Die häufigste mit Elementen beschriebene Bahn ist die Ellipse.

Satellitenbahnelemente enthalten außer den 6 Elementen einer ungestörten Bewegung auf einer Keplerellipse üblicherweise weitere Parameter, mit denen Bahnstörungen berücksichtigt werden.

Inhaltsverzeichnis

Die Bahnelemente bei elliptischer Bahn


Zentralkörperspezifische Angaben sind, wie in der Abbildung oben, in der Reihenfolge Sonne/Erde durch Schrägstrich markiert.

Gestaltelemente

Die Beschreibung der Gestalt der Bahnkurve erfordert zwei Werte, die die Form und die Größe festlegen:

Daraus abgeleitet werden:

Lageelemente

Die Lage im Raum relativ zu einem Referenzsystem wird durch drei Parameter bestimmt:


Zeitbezug

Der Zeitbezug legt den Zeitnullpunkt fest:

Abgeleitete Größen

Die Umlaufzeit als siebentes Bahnelement

Streng genommen gehört die Umlaufzeit \({\displaystyle \textstyle P}\) als siebentes Bahnelement zu den zur allgemeinen Beschreibung des Zweikörperproblems notwendigen unabhängigen Größen. Sie wird oft nicht angegeben, da sie und die große Halbachse über das Gravitationsgesetz miteinander verknüpft sind, und die Masse des betrachteten Körpers gegenüber der des Zentralkörpers vernachlässigbar ist. Wenn die Masse des kleineren Körpers ebenfalls im Gravitationsgesetz beachtet werden muss, ist sie indirekt das siebente Bahnelement.[1]

Die Angabe von Bahnelementen

Das 6-Tupel \({\displaystyle \textstyle {\begin{pmatrix}p,&e,&i,&\Omega ,&\omega ,&t\end{pmatrix}}}\) bezeichnet man als klassische Bahnelemente[2].

Daneben gibt es auch andere Möglichkeiten, die dem jeweiligen Fall angepasst sind:

Übersicht


Bahnelement Verwendbarkeit
Bahnelement Bezug Symbol Dimension Ellipse Parabel / Hyperbel
Numerische Exzentrizität Form e, ε 1 Ja Ja
Exzentrizitätswinkel Form Φ 1 Ja Nein
Halbparameter Größe p Länge Ja Ja
Periapsisdistanz Größe rmin Länge Ja Ja
Große Halbachse Größe a, α Länge Ja Nein
Inklination, Bahnneigung Lage i Winkel Ja Ja
Winkel des Knotens Lage Ω Winkel Ja teilweise 1
Argument der Periapsis Lage ω Winkel Ja Ja
Mittlere Bewegung Zeitverhalten μ, n, V 1 / Zeit Ja Ja
Winkelgeschwindigkeit 2 Zeit-Ortverhalten Winkel / Zeit Ja Ja
Mittlere Anomalie 2 Bahnort M Winkel Ja Nein
Mittlere Länge 2 Bahnort λ, L Winkel Ja Nein
Radiusvektor 2 Bahnort \({\displaystyle {\vec {R}}}\) Länge Ja Ja
Umlaufperiode Zeitbezug P Zeit Ja Nein
Periapsiszeit Zeitbezug t Zeit Ja Ja
1 offene Bahnen haben nicht immer einen aufsteigenden Knoten
2 zu einem bestimmten Zeitpunkt

Siehe auch


Literatur


Weblinks


Einzelnachweise


  1. Oliver Montenbruck: Grundlagen der Ephemeridenrechnung, Sterne und Weltraum, Heidelberg 2001, ISBN 3-87973-941-2, S. 57
  2. Guthmann, S. 163
  3. Vollmann, 8.1








Kategorien: Himmelsmechanik | Raumfahrtphysik








Stand der Informationen: 22.11.2020 03:54:18 CET

Quelle: Wikipedia (Autoren [Versionsgeschichte])    Lizenz: CC-by-sa-3.0

Veränderungen: Alle Bilder und die meisten Designelemente, die mit ihnen in Verbindung stehen, wurden entfernt. Icons wurden teilweise durch FontAwesome-Icons ersetzt. Einige Vorlagen wurden entfernt (wie „Lesenswerter Artikel“, „Exzellenter Artikel“) oder umgeschrieben. CSS-Klassen wurden zum Großteil entfernt oder vereinheitlicht.
Wikipedia spezifische Links, die nicht zu Artikeln oder Kategorien führen (wie „Redlink“, „Bearbeiten-Links“, „Portal-Links“) wurden entfernt. Alle externen Links haben ein zusätzliches FontAwesome Icon erhalten. Neben weiteren kleinen Designanpassungen wurden Media-Container, Karten, Navigationsboxen, gesprochene Versionen & Geo-Mikroformate entfernt.

Wichtiger Hinweis Da die gegebenen Inhalte zum angegebenen Zeitpunkt maschinell von Wikipedia übernommen wurden, war und ist eine manuelle Überprüfung nicht möglich. Somit garantiert LinkFang.org nicht die Richtigkeit und Aktualität der übernommenen Inhalte. Sollten die Informationen mittlerweile fehlerhaft sein oder Fehler in der Darstellung vorliegen, bitten wir Sie darum uns per zu kontaktieren: E-Mail.
Beachten Sie auch : Impressum & Datenschutzerklärung.